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l'influence de l'ordre de grandeur de l'angle de Bragg, 
ce qui nous permettra de savoir dans quelles limites 
l'approximation de 'colonne' (cas limite pour lequel 
l'angle de Bragg est nul) reste acceptable. 
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The Determination of Accurate Unit-cell Dimensions from Inclined Weissenberg Photographs 

BY N. W. ALCOCK* AND G. M. SHELDRICK 

University Chemical Laboratory, Cambridge, England 

(Received 26 October 1966) 

The method of Main and Woolfson for obtaining accurate unit-cell dimensions from ordinary zero-layer 
Weissenberg photographs is extended to general (including equi-inclination) upper-layer Weissenberg 
and oscillation photographs. 

Introduction 

Main & Woolfson (1963) showed that accurate unit- 
cell dimensions could be obtained from the separations 
of the cq - ( x  2 doublets on ordinary zero-layer Weissen- 
berg photographs. The results are insensitive to errors 
in the camera radius and the same photographs are 
used for the intensity measurements and the deter- 
mination of unit-cell dimensions; thus the method is 
particularly appropriate to low temperature studies. 
However when a crystal is grown in situ it is sometimes 
possible to obtain good photographs only about a 
single oscillation axis, with the result that not all the 
unit-cell dimensions can be determined from the single 
zero-layer photograph. Hence we have extended the 
technique to upper-layer photographs. 

Theory 

The basis of our method is the determination of sin20 
from the c~ doublet separation t on the film at right 
angles to the oscillation axis direction. The unit-cell 
dimensions are then calculated analytically and their 
standard deviations estimated statistically. Main & 
Woolfson determined sin 0, which required a least- 
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squares iteration starting with approximate values of 
the cell constants. 

For the zero-layers, instead of the approximation 
proposed by Main & Woolfson, we use the correspond- 
ing exact expression: 

sin20= {1 + [(fi2/2 sin ~0) +tan(fiO/2)]2} -1 (1) 

where cSO=t/2r, r is the camera radius, 2 is the 0q 
wavelength and c~2 the difference in ex and e2 wave- 
lengths. 

For the upper layers it is necessary to know the value 
of the real unit-cell length a appropriate to the oscilla- 
tion axis in order to calculate sin20. In practice we 
begin with the approximation c~0= t cos lt/2r where - / t  
is the camera inclination angle (see below); this effec- 
tively assumes equi-inclination for both el and e2, and 
that sin20 approaches unity. Hence, via (1) and the 
route outlined in the following section, an approximate 
value of a is found and substituted in the exact expres- 
sion (below) for sin20. This leads to a better approx- 
imation for a, which is resubstituted in the exact ex- 
pression for sin20, etc. This procedure is found to 
converge in three or four cycles. 

Consider the stereographic projection shown in Fig. 
1. The symbols (and signs thereof) are the same as in 
International Tables for X-ray Crystallography (1959), 
which is also the source for (7) below. Note that some 
authors give the opposite sign for/z. 1 is the incident 
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beam, D the diffracted beam, U the undeviated beam 
and Q the oscillation axis. From the spherical triangle 
UDQ, 

cos 20 = cos(90 + ~ )  cos(90 + v) 
+ s i n ( 9 0 + p )  sin(90+v) cos y ,  

which on rearrangement gives: 

cos ~, = (1 - 2  s in20-sin/z  sin v)/cos/z cos v.  (2) 

This expression may also be obtained from that in 
International Tables by substitution for ~ and (. If we 
use the subscript 1 for cq and 2 for c~2 radiation, it 
follows from Bragg's law that: 

sin202 = sin201(1 + f/]./2) 2 ; (3) 

thus from (2) for ~2 radiation, 

[1 - 2  sin201(1 + JA/2) z -  sin ~ sin 1'2] 
cos(y+Jy) = , (4) 

cos/t  cos v2 

where Jy = t/r. Expanding cos(y + Jy) in (4), substituting 
for sinZ0a from (2), and rearranging, we have 

cos y[cos(Jy)-  (1 + f2/2) z cos va/cos v2] - sin y sin(fly) = 

1 - s i n / t  sin Vz-(1  +f2/2)2(1 - s i n / t  sin vl) . 

hence 
cos/t  cos v2 

portional to t*. The real unit-cell dimensions are then 
determined in the usual way from the analytical con- 
stants A. • • F. 

Estimation of  standard deviations 

As shown in International Tables the standard devia- 
tions are calculated from the diagonal elements b rr of 
the inverse matrix of normal equations. However the 
assumption that the distribution of the residuals & is 
normal is invalid in this particular problem, owing to 
the nature of the weighting scheme adopted; this leads 
to standard deviations which are too low. Hence we 
replace the term ( N - K )  by [(S Wl)2/,~ 14 "2]- K, where 
N is the number of reflexions and K the number of 
analytical constants which can be determined. This 
behaves correctly in the limiting cases of w~ = w~ ej and 
w~ = 1, wi ej = 0. The expression for the standard devia- 
tion in the analytical constant Ur is then: 

a t =  {(b rr S w~J2)}/{[(Z wdZ/Z w~)] -K}*.  (9) 

If the denominator is less than unity the unit-cell is 
ill-defined. The estimated standard deviation in a real 
unit-cell dimension is found by taking the square root 
of the sum of the squares of the changes in its value 
caused by varying each analytical constant in turn by 
its estimated standard deviation. 

1 - sin/z sin v2-  (1 + f , ; ~ / A ) 2 ( 1  - -  sin p sin vl) 
c o s ( y + r ) =  

cos/z cos v2{sin2Jy+[cos(Jy)-(1 +J2/2)  2 cos vl/cos v2] 2}, , 

where 

tan(r) = sin(Jy)/[cos(fy) - (1 + &!/2)2cos Vl/COS r2]. (6) 

But since 
sin vx = sin :, + n2/a ,  (7) 

where n is the value of the index h, k or l appropriate 
to the oscillation axis, and a the relevant real unit-cell 

length, sin v2 = sin ~ + n(2 + f2 ) / a .  (8) 

Hence from (5), (6), (7) and (8) y can be calculated 
and substituted in (2) to obtain sin201. 

Calculation of  unit-cell dimensions 

The expressions: 

sin20 = Ah 2 + Bk  2 -t- Cl 2 q- Dk l  + Ehl + Fhk 

are a system of linear equations with known coeffi- 
cients. As shown in International Tables, they may be 
solved analytically via inversion of the matrix of normal 
equations set up by minimizing Z" w~g 2, where wi is the 
weight of the ith reflexion and & the difference between 
the observed and calculated values of sin20~. An ana- 
lytical weighting scheme for non-zero-layers would 
be extremely complicated, so we vary t by a small 
increment and calculate the resultant change in sin20. 
The weights are set equal to 6t/J(sin20), which assumes 
that the expected error in measurement of t is pro- 

(5) 
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Fig. 1. Stereographic projection. 
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Performing the calculations 

A program has been written for the Cambridge Univer- 
sity Titan computer which enables the above calcula- 
tions to be carried out for all seven crystal systems. 
The input data consist of crystal system code number, 
2el, J2 and r; followed by blocks of any number of 
h , k , l , t  sets. Each block is headed by the oscillation 
axis code number and inclination angle ( - p ) ,  there 
being one such block per photograph. Hence data 
about 1, 2 or 3 axes may be included. The output in- 
cludes simple tests on the denominator of (9) to show 
whether the standard deviations are reliable. If one or 
more analytical or real unit-cell constants are indeter- 
minate, they are printed as zero and matrix singularities 
avoided, so that the rest of the output is correct. The 
program takes about 15 seconds for a six-cycle refine- 
ment with 40 reflexions. 

d~ 
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Resul t s  

The technique has been tested on several compounds  
with satisfactory results, as shown in Table 1. 

(i) Pentakisdiethylphenylphosphine diruthenium tetra- 
chloride (PPRTC),  monoclinic. Data  for layers hkO to 
hk8 (/t = - 3 5 . 5  o) gave cell constants in agreement with 
those determined by a least-squares fit to data f rom 
an internally calibrated Guinier  photograph (Alcock & 
Raspin,  1957). All the standard deviations were satis- 
factory, ranging from 0-2% to 0.09%. The estimated 
s tandard deviations from the powder data shown in 
Table 1 are double those from the least-squares fit to 
allow for possible systematic errors. 

(ii) Aenigmatite, triclinic. Data  for hkO, hkl, Okl and 
hOl gave unit-cell dimensions in agreement with those 
found f rom back-reflexion oscillation and precession 
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Fig. 2. Errors in sin2 0 for ~/z= -0.5 ° 

photographs by Kelsey & McKie  (1964). The two 
methods yielded similar s tandard deviations, the cq - e 2  
method with appreciably less effort. 

(iii) Nyererite, orthorhombic. Data  for hkO to hk5 
( / t=  - 17.7 °) gave good values for a and b in agreement 
with those found by McKie  (1966) from back-reflexion 
photographs.  However, al though the two c values were 
in good agreement, that  from the ~1-e2  splittings had 
a s tandard deviation of 2½%. This demonstrates that 
well defined analytical constants C, D and E may be 
determined from [001] oscillation-axis data alone only 
if  a wide range of values o f / t  is used. Our experience 
with other crystals confirms this. 

(iv) On testing the program on the original zero- 
layer data of  Main  & Woolfson for thal l ium hydrogen 
tartrate, not only were the calculated unit-cell dimen- 
sions in agreement to six significant figures, fully justi- 
fying any minor  approximat ions  in either treatment,  
but  the estimated standard deviations were within ten 
per cent of  each other, despite the fact that theirs were 
derived from an estimated error in the measurement  of  
the ~1-(~2 splittings, and ours were estimated statisti- 
cally by the normal  least-squares procedure. 

P o s s i b l e  sys temat ic  errors 

I f  the crystal is slightly misset by an angle 5m, the 
crystallographic zone axis will precess about  the oscil- 
lation axis, and the errors in the splittings will be of  
the same order as when /t has errors ranging from 
+ 5m to - 5m. This has been investigated by calculating 
the expected c~ doublet  separations t for various sin20 
values a n d / t = / t 0 - ~ / t ,  and then using these a n d / t = / t 0  
to recalculate the sin20 values and so find the error in 
sin20 corresponding to a given error ~/t in/ t .  The value 
of  a was the same in both calculations and chosen so 
that  - / to  was the cq equi-inclination angle. The results 
are linearly dependent  on ~/t in the range - 0.5 o < ~/t < 
+ 0 . 5 ° ;  those for ~ / t = - 0 . 5  ° are shown in Fig.2. The 
effect is small  compared with r andom errors in sin20, 

Table 1. Comparison of unit-cell dimensions found for three compounds with data obtained by alternative methods 
PPRTC Aenigmatite Nyererite 

Precession and 
~10C2 Guinier 0CI~ 2 back-reflexion 0~10~ 2 Back-reflexion 

a 15.882 A 15.883 A 10.414 A 10.406 A. 25-250 A 25.21 A 
__. 0.013 + 0.009 ___ 0.019 + 0.013 + 0.027 

b 19.078 19.094 10.833 10"813 8.816 8"81 
-t- 0.017 + 0-007 _ 0.019 + 0-014 + 0.012 

c 10.418 10.406 8.930 8.926 12.73 12.74 
+ 0-018 + 0.005 + 0.008 + 0.006 + 0.29 

90 ° 90 ° 105.10 ° 104.93 o 90 ° 90 ° 
-t-0.12 +0.15 

fl 104.18 104.06 96.65 96.87 90 90 
+0.07 +0.05 +0.14 +0.18 

7 90 90 125.39 125.32 90 90 
+0-11 _0.10 

N 58 73 23 
R 0.0034 0.0024 0.0026 

N= number of reflexions 
R = ,~Wc, t~t2/~W¢, 
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reaching a maximum fo r / z=  - 4 5  ° and sinZ0=0.86 of 
only 0.0015. Since this is in every respect an extreme 
case, errors due to crystal missetting may be safely 
ignored. This relative insensitivity to the value of /z  
also explains why the program converges rapidly in a. 

The method is very insensitive to the camera radius. 
A change of 1% in the value used for the aenigmatite 
data produced only a change of 0.03% in the calcu- 
lated unit-cell dimensions. 

effective check that a set of upper-layer Weissenberg 
photographs have been consistently indexed, since an 
incorrectly indexed reflexion is immediately apparent 
on comparing the sin20 values from the c~ doublet 
separations with those calculated from the analytical 
constants. 

We are very grateful to Dr C. H. Kelsey and Dr D. 
McKie for their carefully measured data. 

Conclusions 

This extension of Main & Woolfson's technique has 
the advantages that only data about a single axis are 
required, and that (even when data from several axes 
are available) more information can be incorporated. 
It can also be recommended as a quick and highly 
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Diffuse Double Diffraction of X-Rays 
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A Monte Carlo method has been used to evaluate the magnitude of twice scattered X-rays in diffraction 
experiments. The quantitative effects of variations in the primary scattering distribution, the absorption 
coefficient, the scattering power of the atoms, the X-ray wavelength, the specimen thickness, the mono- 
chromator and slit configuration and of polarization corrections have been derived. These factors 
have various influences on the magnitude and angular distribution of the twice scattered radiation but 
I2(0) is of the order of 0.0025 a2//~p W (electron units per atom) for all the elements and conditions 
considered, where a2 is the square of the primary diffraction cross-section, Ft is the mass absorption 
coefficient and W is the atomic weight. 

The experimental measurements of diffusely scattered 
radiation include contributions due to multiply scat- 
tered radiation. Often, this contribution must be ac- 
counted for in order to analyse the coherently diffracted 
component. Chandrasekhar (1950) has derived certain 
expressions for the multiple scattering of radiation but 
these are not directly applicable to most diffraction 
experiments. Vineyard (1954) has obtained expressions 
for the doubly scattered component of neutron radia- 
tion, with isotropic primary scattering [lx(0)] and two 
common diffraction geometries. Warren (1959a) has 
obtained numerical values for the double scattering of 
Cu Kct X-radiation from a polycrystalline sample of 
copper in the normal Bragg-Brentano X-ray reflection 
geometry, representing the primary scattering as a fi- 
nite sum of sharp reflections. The conditions assumed 

* Present address, Union Carbide Corp., Cleveland, Ohio, 
U.S.A. 

in either of these two calculations would not appear 
to be applicable to liquid or amorphous specimens. 
With such materials Ix(O) is not isotropic nor does it 
consist of a few sharp reflections. In addition, if ab- 
sorption in the sample is low, and if the incident and 
detected beams are restricted (as they are by slits or 
monochromators) the geometrical conditions may be 
abnormal. 

In this paper we present the results of more general 
Monto Carlo calculations. The quantitative effects on 
the double scattering of variations in the primary scat- 
tering distribution, the absorption coefficient, the scat- 
tering power of the atoms, the specimen thickness, the 
monochromator configuration and of polarization cor- 
rections are shown. We consider only the double scat- 
tering of X-rays from the 'surface' of a flat sample 
large enough to intercept the entire beam, with source 
and detector situated symmetrically with respect to the 
surface normal. 


